## Crystal Structure

# Bis $\left\{\mu-N\right.$-[2-( $\eta^{5}$-cyclopentadienyl)-ethyl]-4-toluenesulfonamido- $\left.N, O: O^{\prime}\right\}$ -bis[bis(trifluoromethanesulfonato-O)titanium(II)] bis(dichloromethane) solvate 

## Cornelis Lensink, Graeme J. Gainsford* and Neville I. Baxter

Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand Correspondence e-mail: g.gainsford@irl.cri.nz

Received 12 October 2000
Accepted 19 December 2000
The title compound, $\left[\mathrm{Ti}_{2}\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, consists of unique centrosymmetric dimers, with an eightmembered ring derived from the monomer subunits by formation of two $\mathrm{Ti}-(\mathrm{N}, \mathrm{O})-\mathrm{S}-\mathrm{O}$ head-to-tail sequences around a crystallographic inversion centre, and two ordered dichloromethane solvate molecules. The Ti ion has distorted octahedral coordination, through the N atom and one O atom of one $p$-toluenesulfonamido group linked by an ethyl group to the bound cyclopentadiene moiety, one O atom from the other $p$-toluenesulfonamido group and two singly bound trifluoromethanesulfonates moieties which are coordinated in pseudo-cis positions. Both $\mathrm{Ti}-\mathrm{O}$ (sulfonamido) bond lengths [2.149 (3) and 2.388 (3) $\AA$ ] are considered bonding interactions.

## Comment

The title compound, (I), was prepared as part of an extensive study of titanium compounds with potential as homogeneous catalysts for stereoregular polymerizations (Lensink et al., 2001). The coordination of interest involved the $N$-[2-(cyclo-pentadienyl)ethyl]-p-toluenesulfonamido ligand, which is capable of coordinating via the cyclopentadiene and the N atom only (Sinnema et al., 1997; Lensink, 1998) or, by analogy with bis(isopropoxy)[1,2-bis( $p$-tolylsulfonamido)cyclohexane]titanium (Pritchett et al., 1998), via the N and O atoms of the

(I)
sulfonamido group, or via all three donors (Lensink et al., 2001). In the case of (I), two sulfonamido ligands utilize all the

N and O atoms to bridge the two Ti atoms, forming a centrosymmetric dimer.
The crystal structure of (I) consists of independent dimers (Fig. 1), with no significant intermolecular contacts to the solvate or to other dimers; the closest intermolecular contact is $\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{~F} 4 A\left(\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z\right)$ at 2.511 (2) $\AA$, compared with the closest intramolecular contact, $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 8 A(1-$ $x,-y,-z$ ) of 2.350 (2) Å. The unique eight-membered dimer ring is derived from the monomer subunits by formation of two $\mathrm{Ti}-(\mathrm{N}, \mathrm{O})-\mathrm{S}-\mathrm{O}$ head-to-tail sequences around a crystallographic inversion centre. There are several reported bridged systems containing $M-\mathrm{O}-\mathrm{S}-\mathrm{O}-M^{\prime}$, for example, with $M=\mathrm{Rh}$ (Clegg et al., 1984) or $M=\mathrm{Co}$ (Jiang et al., 1995), and four $M-\mathrm{N}-\mathrm{S}-\mathrm{O}-M^{\prime}$ systems, with $M=\mathrm{Al}$ (Corey et al., 1992), $M=\operatorname{In}$ (Blaschette et al., 1991) and $M=\mathrm{Ag}$ (Jones et al., 1994; Weitze et al., 1997). However, most have a further O atom bound to the sulfur which is not coordinated to a metal. The closest related compound is therefore a yttrium compound, namely bis $\{[\mu$-trans-1,2-bis( $2,4,6$-triisopropylben-zenesulfonamidato)cyclohexane- $\left.N, N^{\prime}, O, O^{\prime}, O^{\prime \prime}\right]$ bis(dimethylsilyl)(amido)yttrium(III)\}, hereafter QABGIJ (Gorlitzer et al., 1998), which has a similar centrosymmetric $\mathrm{Y}-(\mathrm{N}, \mathrm{O})-\mathrm{S}-\mathrm{O}$ sequence but different other ligands.

The Ti ion in (I) has distorted octahedral coordination through the N and one O atom of the sulfonamide which is linked to the bound cyclopentadiene via an ethyl group [TiO1 2.388 (3) and Ti-N5 2.004 (4) $\AA$ ], the cyclopentadiene [ $\mathrm{Ti}-C_{g} 2.040(5) \AA$, where $C_{g}$ is the centre of the cyclopentadiene ring], one O atom from the adjacent sulfonamide $\left[\begin{array}{ll}\mathrm{Ti}-\mathrm{O} 2 & 2.149(3) \AA] \text { and two trifluoromethanesulfonates }\end{array}\right.$ [ $\mathrm{Ti}-\mathrm{O} 2.051$ (3) and 2.066 (3) $\AA$ ]. The trifluoromethanesulfonates are coordinated in pseudo-cis positions, bent away from the cyclopentadiene [e.g. $\mathrm{O} 6-\mathrm{Ti}-\mathrm{O} 182.4(1)^{\circ}$ and $C_{g}-$ Ti-O6 114.6 (2) ${ }^{\circ}$ ].

The longer $\mathrm{Ti}-\mathrm{O} 1$ (sulfonamide) distance of 2.388 (3) $\AA$ is considered to be a significant, though weak, bond based on the


Figure 1
The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. H atoms and the minor conformation of one trifluoromethanesulfonate moiety have been excluded for clarity.
stereochemistry and the identical $\mathrm{S}=\mathrm{O}$ bond lengths [1.466 (3) A]], in agreement with the analysis presented in our previous paper (Lensink et al., 2001). The comparable values in QABGIJ are $\mathrm{S}=\mathrm{O}$ of 1.463 and $1.482 \AA$, and $\mathrm{Y}-\mathrm{O}$ of 2.234 and $2.599 \AA$, compared with values of 2.20 and $2.44 \AA$ calculated by us on the basis of different ionic radii $(0.05 \AA)$.

The trifluoromethanesulfonate geometries are similar to that of the singly bound ligand in [2,3-bis(dimethylamino)-phenyl](isopropoxy)(trifluoromethylsulfonyloxy- $O$ )(trifluoro-methysulfonyloxy- $O, O^{\prime}$ )titanium(IV) (Donkervoort et al., 1997), where $\mathrm{Ti}-\mathrm{O}$ is $2.093 \AA$, compared with 2.051 (3) and 2.066 (3) $\AA$ in (I).

The crystallization geometry of the dichloromethane solvent is normal (Spence et al., 1998). Although the molecule is not disordered, as in some other crystals (Carmalt et al., 1998), it appears to have no crystal-binding function.

Cambridge Structural Database searches were performed using CONQUEST (Version 1.0; Cambridge Structural Database, 2000).

## Experimental

The air-sensitive title compound was prepared from the reaction of dichloro\{ $N$-[2-( $\eta^{5}$-cyclopentadienyl)ethyl]- $p$-toluenesulfonamido\}titanium with a stoichiometric amount of $\mathrm{AgSO}_{3} \mathrm{CF}_{3}$ in dichloromethane. Crystals of (I) were obtained from dichloromethanepentane; details and spectroscopic data will be reported elsewhere.

Crystal data
$\left[\mathrm{Ti}_{2}\left(\mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}\right)_{4}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\right]$ -
$2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1384.6$
Monoclinic, $P 2_{1} / n$
$a=11.551$ (4) Å
$b=15.068$ (5) $\AA$
$c=15.218$ (5) $\AA$
$\beta=93.233(5)^{\circ}$
$V=2644.4(16) \AA^{3}$
$Z=2$
Data collection
Siemens SMART CCD areadetector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (Blessing, 1995)
$T_{\text {min }}=0.736, T_{\text {max }}=0.816$
31967 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.139$
$S=1.053$
5361 reflections
355 parameters
H -atom parameters constrained

$$
\begin{aligned}
& D_{x}=1.739 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5304 \\
& \quad \text { reflections } \\
& \theta=2.2-25.2^{\circ} \\
& \mu=0.848 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Block, orange } \\
& 0.36 \times 0.28 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

5361 independent reflections
3085 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.091$
$\theta_{\text {max }}=26.39^{\circ}$
$h=-14 \rightarrow 11$
$k=-18 \rightarrow 18$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0371 P)^{2}\right. \\
& +7.19 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.003 \\
& \Delta \rho_{\text {max }}=1.08 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}
\end{aligned}
$$

Part of one of the trifluoromethylsulfonates was disordered between two conformations, labelled $A$ and $B$, which refined to occupancies of 0.633 (4) and 0.367 (4), respectively. One fluorine (F6) is common to both conformations. Atom C16B was refined with an isotropic displacement parameter. H atoms were refined as riding, with isotropic displacement parameters 1.2 (phenyl, methylene and cyclopentadienyl) and 1.5 (methyl) times $U_{\text {eq }}$ of their parent atoms, and $\mathrm{C}-\mathrm{H}$ distances of $0.95,0.99,1.00$ and $0.98 \AA$, respectively.

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| Ti1-N5 | 2.004 (4) | Ti1-C12 | 2.350 (5) |
| :---: | :---: | :---: | :---: |
| Ti1-O6 | 2.051 (3) | Ti1-C14 | 2.360 (5) |
| Ti1-O3 | 2.066 (3) | Ti1-C11 | 2.372 (5) |
| Ti1-O2 ${ }^{\text {i }}$ | 2.149 (3) | Ti1-C10 | 2.381 (5) |
| Ti1-C13 | 2.349 (5) | Ti1-O1 | 2.388 (3) |
| N5-Ti1-O6 | 146.02 (15) | $\mathrm{O} 3-\mathrm{Ti} 1-\mathrm{O} 2{ }^{\text {i }}$ | 151.16 (14) |
| N5-Ti1-O3 | 92.00 (14) | N5-Ti1-O1 | 63.80 (13) |
| O6-Ti1-O3 | 83.59 (13) | O6-Ti1-O1 | 82.39 (12) |
| $\mathrm{N} 5-\mathrm{Ti} 1-\mathrm{O} 2{ }^{\text {i }}$ | 90.67 (14) | O3-Ti1-O1 | 77.77 (11) |
| $\mathrm{O} 6-\mathrm{Ti} 1-\mathrm{O} 2^{\mathrm{i}}$ | 78.31 (12) | $\mathrm{O} 2^{\mathrm{i}}-\mathrm{Ti} 1-\mathrm{O} 1$ | 77.73 (11) |
| O2-S1-O1-Ti1 | -118.67 (17) | $\mathrm{N} 5-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Ti1}{ }^{\text {i }}$ | -84.2 (4) |
| N5-S1-O1-Ti1 | 3.65 (18) | $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Ti1}{ }^{\mathrm{i}}$ | 155.1 (4) |
| $\mathrm{C} 1-\mathrm{S} 1-\mathrm{O} 1-\mathrm{Ti} 1$ | 120.85 (19) | $\mathrm{O} 1-\mathrm{S} 1-\mathrm{N} 5-\mathrm{C} 8$ | -173.8 (4) |
| $\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2-\mathrm{Ti} 1{ }^{\text {i }}$ | 31.0 (5) | Ti1-N5-C8-C9 | 32.9 (7) |

Symmetry code: (i) $2-x,-y,-z$.
Data collection and cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); structure solution: SHELXS97 (Sheldrick, 1997); structure refinemnet: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990) and WinGX (Farrugia, 1999).

We wish to thank Drs J. Wikaira and C. Richardson, University of Canterbury, for collection of the diffraction data.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1309). Services for accessing these data are described at the back of the journal.

## References

Blaschette, A., Michalides, A. \& Jones, P. G. (1991). J. Organomet. Chem. 411, 57-68.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cambridge Structural Database (2000). Version 5.19. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.
Carmalt, C. J., Whaley, S. R., Lall, P. S., Cowley, A. H., Jones, R. A., McBurnett, B. G. \& Ekerdt, J. G. (1998). J. Chem. Soc. Dalton Trans. pp. 553-557.

Clegg, W., Akhter, L. \& Garner, C. D. (1984). J. Chem. Soc. Chem. Commun. pp. 101-102.
Corey, E. J., Sarshar, S. \& Bordner, J. (1992). J. Am. Chem. Soc. 114, 79387939.

Donkervoort, J. G., Jastrzebski, J. T. B. H., Deelman, B.-J., Kooijman, H., Veldman, N., Spek, A. L. \& van Koten, G. (1997). Organometallics, 16, 4174-4184.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gorlitzer, H. W., Speigler, M. \& Anwander, R. (1998). Eur. J. Inorg. Chem. pp. 1009-1014.
Jiang, F., Xie, X., Hong, M., Kang, B., Cao, R., Wu, D. \& Liu, H. (1995). J. Chem. Soc. Dalton Trans. pp. 1447-1451.
Jones, P. G., Henschel, D., Weitze, A. \& Blaschette, A. (1994). Z. Anorg. Allg. Chem. 620, 1514-1520.
Lensink, C. (1998). J. Organomet. Chem. 553, 387-392.
Lensink, C., Gainsford, G. J. \& Baxter, N. I. (2001). Acta Cryst. C57, 366-367.
Pritchett, S., Woodmansee, D. H., Gantzel, P. \& Walsh, P. J. (1998). J. Am. Chem. Soc. 120, 6423-6424.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sinnema, P.-J., van der Veen, L., Spek, A. L., Veldman, N. \& Teuben, J. H. (1997). Organometallics, 16, 4245-4247.

Spek, A. L. (1990). Acta Cryst. A46, C-34.
Spence, M. A., Rosair, G. M. \& Lindsell, W. E. (1998). J. Chem. Soc. Dalton Trans. pp. 1581-1586.
Weitze, A., Blaschette, A. \& Jones, P. G. (1997). Acta Cryst. C53, 1195-1197.

